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Breast cancer is the most common type of cancer among women and despite recent 
advances in the medical field, there are still some inherent limitations in the currently used 
screening techniques. The radiological interpretation of screening X-ray mammograms 
often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful 
biopsies. Here we propose a computer-aided multifractal analysis of dynamic infrared  
(IR) imaging as an efficient method for identifying women with risk of breast cancer. 
Using a wavelet-based multi-scale method to analyze the temporal fluctuations of breast 
skin temperature collected from a panel of patients with diagnosed breast cancer and 
some female volunteers with healthy breasts, we show that the multifractal complexity    
of temperature fluctuations observed in healthy breasts is lost in mammary glands with 
malignant tumor. Besides potential clinical impact, these results open new perspectives  
in the investigation of physiological changes that may precede anatomical alterations in 
breast cancer development. 
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1. INTRODUCTION 
It is widely recognized that early diagnosis is the key to breast can- 
cer survival. X-ray mammography (Nass et al., 2000; Bronzino, 
2006), the golden standard for breast cancer screening detection, 
has a rather high false-positive rating and is not always effective 
in detecting cancer in young women who generally have dense 
breast tissue (Jorgensen and Gotzsche, 2009; Tamini et al., 2009) 
and this despite the increasing use of computer-aided detec- 
tion/diagnosis methods (Fenton et al., 2011). Biopsy is indeed the 
only conclusive diagnostic test for breast cancer, but the num- 
ber of unnecessary biopsies is still too high (Vinitha Sree et al., 
2009). Since the original observation by Lawson (1956) that skin 
temperature over a malignant tumor is higher than its neighbour- 
hood, possibly resulting from abnormal increase of metabolic 
activity and vascular circulation in the tissues beneath (Yahara   
et al., 2003; Bronzino, 2006), IR thermography has been con- 
sidered as a promising non-invasive screening method of breast 
cancer (Ng, 2009). However the suitability of static IR imaging 
for routine screening has been severely questioned (Head and 
Elliott, 2002; Bronzino, 2006), because of insufficient sensitivity 
for detection of deep lesions and limited knowledge of the rela- 
tionship between surface temperature distributions and thermal 
diseases. Renewed interest in dynamic IR imaging (Etehadtavakol 
and Ng, 2013) comes from the rapid development of new digi- 
tal IR thermography cameras with higher temperature resolution 
(0.08◦C or better) and faster frame rate (70 Hz) (Joro et    al., 
2008a), combined with increasing knowledge of tumor angiogen- 
esis including nitric oxide production of the cancer tissue causing 

 
local disturbances in vasomotor (automatic nervous control of 
smooth muscles forcing blood through capillaries) and cardio- 
genic phenomena as compared to normal tissues (Thomsen and 
Miles, 1998; Anbar et al., 2001). 

The basis for diagnostic application of dynamic IR imaging is 
the detection of intensity variations in temperature rhythms gen- 
erated by the cardiogenic (1–1.5 Hz) and vasomotor (0.1–0.2 Hz) 
frequencies (Button et al., 2004; Joro et al.,  2008b).  In  this 
study we show that beyond intensity differences in these rhythms 
between normal and tumor breast tissues, the complexity of tem- 
perature fluctuations about these physiological perfusion oscilla- 
tions is qualitatively different. Using a wavelet-based multi-scale 
analysis (Muzy et al., 1991, 1994; Arneodo et al., 1995) of tem- 
perature fluctuations, we propose to characterize the multifractal 
properties of these temperature time-series as an effective dis- 
criminating method for early screening procedures to identify 
women with high risk of breast cancer. 

 
2. METHODS OF ANALYSIS 
2.1. THE WAVELET TRANSFORM 
The  wavelet  transform  (WT)  is  a  mathematical  micro-   
scope (Muzy et al., 1991, 1994; Arneodo et al., 1995) that is   
well suited for the analysis of complex non-stationary time-series 
such as those found in physiological systems (Ivanov et  al., 
1999; Goldberger et al., 2002), thanks to its ability to filter out 
low-frequency trends in the analyzed signal :E (Materials and 
Methods). The WT is a space (or time in our study)-scale analysis 
which consists in expanding signals in terms of wavelets   which 
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are constructed from a single function, the “analyzing wavelet” ψ, 
by means of translations and dilations. The WT of a  real-valued 

functions defined in terms of wavelet coefficients: 

function :E is defined as (Mallat, 1998): 
 

1 [ +∞ 

 
/ 

t − t0 
\

 

Z(q, a) = 
)

 
l∈L(a) 

|W (t, a)| ∼ a , (2) 

Wψ [:E](t0, a) = a :E(t)ψ 
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dt, (1) 
a where q ∈ R. Then from the scaling function τ (q), D(h) is 

obtained by a Legendre transform (Muzy et al., 1991,   1994; 
Arneodo et al., 1995): 

where t0  is the time parameter and a (> 0) the scale param- 
eter. By choosing a wavelet ψ whose n + 1 first moments are 
zero [

( 
tnψ(t)dt = 0,  0 ≤ m ≤ n] (Supplementary Figure 1), 

one makes the WT microscope blind to order-n polynomial 
behavior, a  prerequisite  for  multifractal  fluctuations  analy-  
sis (Muzy et al., 1991, 1994; Arneodo et al., 1995). Indeed this 
mathematical microscope can be seen as  a  singularity  scan- 
ner. By increasing magnification (decreasing the scale parameter 
a → 0+) around a given point t, finer and finer details of :E  can 

 
D(h) = min[qh − τ (q)]. (3) 

 
As originally pointed out in Muzy et al. (1994); Arneodo et al. 
(1995), one can avoid some practical difficulties that occur when 
directly performing the Legendre transform of τ (q), by comput- 
ing the following expectation values: 

 
∂ 

be  revealed  and  quantified  via  the  estimate  of  the  so-called 
Holder exponent h(t) (Muzy et al., 1991, 1994; Arneodo et    al., 

h(q, a) = ln (Z(q, a)) 
∂q 

1995). ) ( ) ̂  
 

2.2. THE WAVELET TRANSFORM MODULUS MAXIMA METHOD 

= ln 
l∈L(a) 

|Wψ [:E](t, a)| Wψ [:E](q, l, a), 

The WT modulus maxima (WTMM) method was originally 
developed to generalize box-counting techniques (Arneodo et al., 
1987) and to remedy for the limitations of the structure func- 
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tions method to perform multifractal analysis of one-dimensional 
(1D) velocity signal in fully developed turbulence (Muzy et al., 
1991, 1994; Arneodo et al., 1995). It has proved very efficient 
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to  estimate  scaling  exponents  and  multifractal  spectra (Muzy where Ŵ ψ [:E](q,   l,   a) = |Wψ [:E](t, a)| 
 is  the  equivalent   of 

et al., 1994; Delour et al., 2001; Audit et al., 2002). This method 
has been generalized in 2D for the multifractal analysis  of  
rough surfaces (Arneodo et al., 2003) and then for the analy-    
sis of 3D scalar and vector fields (Kestener and Arneodo, 2004; 
Arneodo et al., 2008). It has been successfully applied in var- 
ious areas of fundamental research (Arneodo et al., 1998a,b, 
2002, 2003, 2008; Khalil et al., 2006; Roland et al., 2009; Roux 
et al., 2009; Arneodo et al., 2011). In the context of the present 
study, the 1D WTMM method has proved very efficient at 
discriminating between healthy and sick heart beat dynamics 
(Ivanov et al., 1999, 2001; Goldberger et al., 2002), whereas   
the 2D WTMM method can be used to detect microcalcifica- 
tions and has great potential to assist in cancer diagnosis from 
digitized mammograms (Kestener et al., 2001; Arneodo et al., 
2003). 

The WT modulus maxima (WTMM) method (Muzy et al., 
1991, 1994; Arneodo et al., 1995) consists in computing the   
WT skeleton defined, at each fixed scale a, by the local  maxima 
L(a)  of  the  WT  modulus  |W (t,  a)|.  These  WTMM  are dis- 
posed on curves connected across scales called maxima lines lt 
(Supplementary Figure 2), along which the WTMM behave as 
ah(t), where h(t) is the Hölder exponent (Muzy et al., 1991, 1994; 
Arneodo et al., 1995) characterizing the singularity of :E at time t. 
The multifractal formalism amounts to characterize the   relative 
contributions of each Hölder exponent value via the estimate     
of the D(h) singularity spectrum defined as the fractal dimen- 
sion of the set of points t where h(t) = h. This spectrum can 
be obtained by investigating the scaling behavior of partition 

Bolzmann weight in the analogy that links the multifractal for- 
malism to thermodynamics (Arneodo et al., 1995). Then from 
the slopes of h(q,  a) and D(q,  a) vs ln a, one gets h(q) and    
D(q) and therefore the D(h) singularity spectrum as a curve 
parametrized by q. 

 
2.3. MONOFRACTAL vs. MULTIFRACTAL FUNCTIONS 
Homogeneous monofractal functions, i.e., functions with singu- 
larities of unique Hölder exponent H, are  characterized  by a 
linear τ (q) curve of slope H. Monofractal scaling implies that the 
shape of the probability distribution function (pdf) of rescaled 
wavelet coefficients (W (·, a)/aH ) does not depend on a, for- 
mally expressed by the self-similarity relationship (Arneodo et al., 
2002): 

ρWa/aH (w) = ρ(w), (5) 

where ρ(w) is a “universal” pdf. A non-linear τ (q) is the sig- 
nature of non-homogeneous multifractal functions, meaning 
that the Hölder exponent h(t) is a fluctuating quantity (Muzy 
et al., 1991, 1994; Arneodo et al., 1995) that depends on t.   
In this study, we fit the τ (q) data by the so-called  log-normal 
quadratic approximation τ (q) = −c0 + c1q − c2q2/2, where the 
coefficients cn  > 0  (Delour  et  al.,  2001).  The  correspond-  
ing singularity spectrum has a characteristic single-humped 
shape D(h) = c0 − (h − c1)2/2c2, where c0 = −τ (0) is the frac- 
tal dimension of the support of singularities of  :E, c1  is  the 
value of h that maximizes D(h) and c2, the so-called inter- 
mittency coefficient (Muzy et al., 1991, 1994; Arneodo et al., 
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1995; Delour et al., 2001), characterizes the width of the D(h) 
spectrum, i.e., the signature of a change in WT coefficient statis- 
tics across scales (Muzy et al., 1991, 1994; Arneodo et al., 1995, 
2002). 

 
3. DESCRIPTION OF DATA 
3.1. STUDY DESIGN AND POPULATION 
Subjects were recruited for the present study from the Perm 
Regional Oncological Dispensary using  procedures  approved 
by the Local Ethics Committee (Gileva et al., 2012). They all 
gave  Informed  Consent  to  participate  in  this  study  via    the 

recording of the IR thermograms of the both mammary glands, 
the cancerous one and the opposite undiagnosed one with no 
visible signs of pathology. Our database includes 33 females 
with ages between 37 and 83 (average 57 years) who all went 
through surgery to remove the histologically confirmed malig- 
nant tumor (invasive ductal and/or  lobular  breast  cancer)  a  
few weeks after thermograms were recorded. The tumors were 
found at different depths from 1 cm  down  to  12 cm  with  a 
size varying from 1.2 cm up to 6.5 cm (Table 1). As a control, 
we also investigated 14 women with intact mammary glands  
and  of  ages  between  23  and  79  (average  49.6  years).   This 

 
 

 

Table 1 | Set of (33) analyzed patients with age, cancerous breast (Right or Left), stage, size and depth of the malignant tumor and histology 

status. 

 Age Breast Stage Size (cm) Depth (cm) Location Histological DS 

1 58 L IIIa 1.57 4 Border outer-inner upper Invasive ductal cancer 

      quadrants  
2 70 R IIa 2.8 3 Border outer-inner upper Invasive ductal cancer 

      quadrants  
3 53 R IIa 2.5 × 2.85 5 Upper outer quadrant Invasive ductal cancer 
4 65 L IIa 2.6 × 3.3 2 Border lower-upper outer 

quadrant 
Cystadenocarcinoma 

5 49 L IIa 4.15 × 3.45 1 Border inner-outer upper 
quadrants 

Cystadenocarcinoma 

6 56 L III 4.5 4 Upper outer quadrant Invasive lobular cancer 
7 47 R IIa 2.7 × 2.2 3 Border inner-outer upper 

quadrants 
Invasive lobular cancer 

8 82 L III 1.6 × 1.8 3 Upper inner quadrant Invasive ductal cancer 
9 44 L IIa 1.8 × 3 6 Upper outer quadrant Invasive ductal cancer 
10 64 R IIa – –  Invasive ductal cancer 
11 55 R IIb 5.3 1 Upper quadrant Ductal cancer 
12 59 R Ib 1.8 and 1.26 12 Border between upper quadrants Invasive ductal and lobular cancer 
13 48 L IIa 1.5 1 Underarm area Invasive lobular cancer 
14 73 R I 1.2 5 Border between upper quadrants Invasive ductal cancer 
15 81 R I – –  Invasive ductal cancer 
16 41 R IIa 3.4 7 Upper inner quadrant Invasive lobular cancer 
17 53 R IIa 3 × 1.5 × 1.4 4 Upper outer quadrant Invasive lobular and ductal cancer 
18 37 L IIa 3.49 × 2.39 6 Upper outer quadrant Invasive ductal cancer 
19 63 L – – –  Invasive ductal cancer 
20 56 R IIa 3.1 × 2.5 × 3.6 3 Upper outer quadrant Invasive lobular and ductal cancer 
21 45 R IIIb 6.5 × 4 2 Upper outer qadrant Invasive cancer 
22 74 R IIa – –  Invasive ductal cancer 
23 40 L – 2.9 × 3.4 1 Border between upper quadrants Invasive lobular cancer 
24 49 L IIa 1.7 × 2.2 2 Border between outer quadrants Paget disease of the nipple 
25 41 L IIa 2.5 and 1.8 × 2, 2.7 × 1.7 3 Border between upper quadrants, 

upper outer quadrant 
Invasive ductal cancer 

26 83 R Susp. ms 1.9 1 Underarm area No metastasis 
27 62 L IIa 2.2 × 2.1 2 Border between inner quadrants Invasive ductal and lobular cancer 
28 76 L IIb 3.49 8 Border between lower quadrants Invasive ductal cancer 
29 57 R II 2.1 × 1.6 6 Border between lower quadrants Invasive ductal cancer 
30 54 R IIa 3.5 3 Upper outer quadrant Invasive ductal cancer 
31 56 R IIb – –  Invasive ductal cancer 
32 55 R IIb 4.4 × 3 × 2.5 9 Border between upper quadrants Invasive ductal cancer 
33 37 R IIa 1.57 1.5 Border Upper-lower outer Invasive lobular cancer 

      quadrants, close to the nipple  
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extensive study was preceded and encouraged by a preliminary 
study with only 6 patients and 3 volunteers (Gerasimova et al., 
2013). 

 
3.2. IR THERMOGRAPHY IMAGING 
Both breasts of healthy volunteers and patients with breast can- 
cer were imaged with a InSb photovoltaic (PV) detector camera 
(Joro et al., 2008a). Imaging was performed with the patient    in 
sitting position with arms down to avoid too much discomfort 
during imaging. Frontal images were taken at a distance ∼1m of 
the patient in an environmental room temperature of    20–22◦C. 
The image frame rate was set to 50 Hz. The image data were 
collected in 14 bits into the computer connected to the PV cam- 
era. Each image set comprised 30 000 256 × 320 pixel2 image 
frames during the 10 min immobile imaging phase. To elimi- 
nate low frequency patient movements, skin surface markers were 
successfully used as reference points for motion correction in the 
analysis. 

3.3. DATA SAMPLING 
Pixel based and windowed regional power spectra and wavelet-
based multifractal analysis of normal  and  cancer breasts were 
tested to define the best procedure to minimize the effect of the 
camera noise and to ensure statistical convergence in the 
multifractal spectra estimation. We  grouped    single-pixel 
temperature time-series (Figures 1A–C) into8 × 8 pixel2 squares 
spanning 10 × 10 mm2 and covering the entire breast (see 
Figures 4A–C).  The  results  reported  correspond  to averaged 
power spectra, partition functions, singularity spectra and WT 
pdfs over 64 temperature time-series in these 8 × 8 subareas. 

 
3.4. REMARK 
As commonly done for noise signals (Muzy et al., 1994; Audit  
et al., 2002) and previously experienced when applying the 1D 
WTMM method to rainfall time-series (Venugopal et al., 2006), 
the wavelet analysis was performed on the cumulative (or inte- 
gral) :E of the temperature time-series (Supplementary Figure 2) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1 | Multifractal analysis of IR temperature time-series. estimated  with  the  WTMM  method  in  (E).  (E)  τ (q)  vs.  q  estimated  by 
Comparative analysis of the cancerous right breast (red) and healthy left linear  regression  fit  of  log2 Z (q,  a)  vs.  log2 a  over  a  range of time-scales 
breast (black) of patient 20 (age 56) and of the healthy right breast [0.3, 3] s (Figure 2A). (F) D(h) vs. h  (Figures 2B,C). The     solid lines in 
(green) of volunteer 14 (age 60). (A–C) 1 min portions of pixel (E,F) correspond  to  quadratic  spectra  (see  text) with parameters 
temperature  time-series.  (D) Averaged  temperature  power  spectra in a [c0 ,  c1 ,  c2 ]=  [0.99,   0.81,   0.0044] (red),  [0.99,   1.23,   0.080] (black), and 
8 × 8 pixel2   square. The straight lines correspond to     power-law scaling [0.99,   1.171,   0.069] (green).  In  (E,F),  the  τ (q)  and  D(h) spectra were 
1/fβ   with exponent β = τ (2) = 0.62 (red), 1.32  (black), and 1.22     (green) as averaged over a 8 × 8 pixel2    square. 
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(3) 

 
 

using the second-order compactly supported  version  ψ(2)  of  
the Mexican hat (Roux et al., 1999) (Supplementary Figure 1). 
Hence the singularities with possible negative Hölder  expo-  
nent −1 < h < 0, become singularities with 0 < hc = h + 1 < 1 
in the cumulative. 

 
3.5. SOFTWARE  AND DOCUMENTATION 
The numerical procedure to perform the WTMM analysis of 1D 
signals can be downloaded at http://perso.ens-lyon.fr/benjamin. 
audit/LastWave 

LastWave is an open source software written in C. We rec- 
ommend interested users to read the LastWave C-Application 
Programming Interface documentation and to contact the cor- 
responding author to be directed to the part of the code of most 
relevance to them. 

 
4. RESULTS 
4.1. SPECTRAL ANALYSIS REVEALS SCALE-INVARIANCE PROPERTIES 

IN SKIN TEMPERATURE DYNAMICS IN BOTH CANCEROUS AND 
HEALTHY BREASTS 

We analyzed individual 1-pixel temperature time-series taken 
from 8 × 8 pixels2-squares covering the patients entire breasts. 
As expected, these time-series generally fluctuate at a higher tem- 
perature when recorded in the tumor region of a malignant 
breast (Figure 1A) than in a symmetrically positioned square on 
the opposite breast (Figure 1B) as well as on a healthy breast 
(Figure 1C). When averaging the corresponding power-spectra 
over the 64 pixels of the considered squares, we observed for the 
two breasts of patient 20 (age 56) and the healthy breast of volun- 
teer 14 (age 60), a rather convincing 1/f β power-law scaling over 
a range of frequencies that extends from the characteristic human 

respiratory frequency (2:0.3 Hz) up to the cross-over frequency 
(;S4 Hz) toward (instrumental) white noise (Figure 1D). As con- 
firmed by the WTMM method (Figure 1E), the exponent β = 
τ (q = 2) = 0.62 ± 0.19 found in the malignant breast is smaller 
than in the opposite breast of patient 20, β = 1.32 ± 0.11, and in 
the volunteer 14 healthy breast, β = 1.22 ± 0.11. This difference 
looks quite significant and very promising in a discriminatory 
perspective. Unfortunately, the histograms of β values obtained 
for all 8 × 8 pixel2 squares covering 33 cancerous breasts, the 32 
opposite breasts (patient 6 had mastectomy of right breast) and 
the 28 volunteer healthy breasts are quite similar (Supplementary 
Figure 3) with mean values β̄  = 1.09 ± 0.01 (cancer), 1.14 ± 0.01 
(opposite) and 1.14 ± 0.01 (healthy). Indeed these histograms 
extend over a rather wide range of β values: 0.5 ;S β ;S 1.9. 

 
4.2. WTMM ANALYSIS DISCRIMINATES BETWEEN MONOFRACTAL 

(TUMOR AREA) AND MULTIFRACTAL (HEALTHY AREA) 
TEMPERATURE  TEMPORAL  FLUCTUATIONS 

When applying the WTMM method to the cumulative of these 
temperature time-series, we confirmed that the partition func- 
tions Z(q,  a) Equation (2) display nice scaling properties  for 
q = −1 to 5, over a range of time-scales that we strictly lim- 
ited  to  (0.43,  2.30 s)  for  linear  regression  fit  estimates  in  a 
logarithmic representation (Figure 2A). The τ (q) so-obtained 
are well approximated by quadratic spectra (Figure 1E). For   
the malignant breast of patient 20, τ (q) is nearly linear as 
quantified by a very small value of the intermittency coeffi- 
cient c2  = (4.4 ± 0.6) · 10−3. This signature of   monofractality 
is confirmed, when respectively plotting h(q, a) and D(q, a) 
Equation (4) vs. log2 a, in Figures 2B,C, where the slopes h(q) = 
c1 = 0.81 ± 0.01 and D(q) = 0.99 ± 0.03, do not   significantly 

 

 

FIGURE 2 | Multifractal analysis of cumulative IR temperature 
time-series in a 8 × 8 pixel2 square in malignant right breast (red) 
and opposite left breast (black) of patient 20 and of the healthy 
right breast (green) of volunteer 14. (A) log2 Z (q, a) vs. log2 (a) 
Equation  (2).  (B) h(q, a)  vs. log2 a  Equation  (4).  (C) D(q,  a)  vs.  log2 a 

Equation (4). The τ (q) spectra shown in Figure 1E were estimated by 
linear regression fit of the data in (A) over the range 2.8 ::: log2 a ::: 5.2.    
The  D(h) spectra  in Figure 1F were  obtained  by  linear  regression  fit  in 
(B,C) over the same range of time-scales. The analyzing wavelet is ψ(2) (3) 
(Supplementary  Figure 1). 
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depend on q, meaning that the D(h) singularity spectrum nearly 
reduces to a single point D(h = c1 = 0.81) = 1 (Figure 1F). This 
monofractal  diagnosis  is  confirmed  when  comparing  the WT 
pdfs obtained at different time-scales (Figure 3A); according to 
Equation (5), they all collapse on a single curve when using the 
exponent H = c1 (Figure 3At ). 

In contrast, the τ (q) spectrum obtained for the opposite 
breast of patient 20, is definitely non-linear with a no longer 
negligible  (one  order  of  magnitude  larger)  quadratic  term   
c2 = 0.080 ± 0.001 (Figure 1E), the hallmark of multifractal scal- 
ing. As shown in Figures 2B,C, the slopes h(q) and D(q) of h(q, a) 
and D(q, a) vs log2 a now depend on q. From the estimate of  
h(q) and D(q), we get the single-humped D(h) spectrum shown 
in Figure 1F, which is well approximated by a quadratic spec- 
trum  with  parameters  c0  = 0.99 ± 0.05, c1  = 1.23 ± 0.01 and 
c2 = 0.080 ± 0.001. Because there is no longer a unique scal- 
ing exponent c1, the self-similarity Equation (5) is not verified 
meaning that the shape of the WT coefficient pdf now evolves 
across scales (Figure 3B), with fatter tails appearing at small 
scales (Figure 3Bt ). Interestingly, the τ (q) (Figure 1E) and D(h) 
(Figure 1F) spectra obtained for the healthy breast of  volunteer 
14 are quite similar quadratic spectra with parameter values c0 = 
0.99 ± 0.03, c1 = 1.17 ± 0.01 and c2 = 0.069 ± 0.002. Again this 
multifractal diagnosis is strengthened by the observation that the 
WT coefficient pdf has a shape that evolves across time-scales 
(Figures 3C,Ct). 

To check the statistical relevance of our multifractal spectra 
estimates, we have generated so-called surrogate series (Theiler 
et al., 1992; Schreiber and Schmitz, 1996) that can be created 
with an identical pdf and optimally similar power spectrum to the 
original series (Supplementary Method). Examples of surrogate 
series for the IR temperature time-series shown in Figures 1A–C 
can be seen in Supplementary Figures 4A–C respectively. Visually, 
there is an obvious resemblance with the original time-series,  
but when computing the corresponding τ (q) (Supplementary 
Figure 4E) and D(h) (Supplementary Figure 4F), we find now  
for the three breasts a τ (q) spectrum that is quite linear and a 
D(h) singularity spectrum that almost reduces to a single    point 
D(h) = c1  with a very small width c2  ≤ 0.01. This     monofrac- 
tal diagnostic is confirmed when reproducing this analysis for 
100 surrogate series; the histograms of intermittency coefficients 
c2 obtained for the three breasts are very similar and mainly 
confined to very small values with means c2  = 0.012    (cancer), 
0.005 (opposite) and 0.006 (healthy) that are all much smaller 
than the threshold c2 = 0.03 we will further use to discriminate 
between monofractal (c2 ≤ 0.03) and multifractal (c2 > 0.03) 
cumulative temperature time-series (Supplementary Figure    5). 
These results indicate that the cumulative temperature time- 
series of healthy breasts are not generated by an  underlying 
linear Gaussian process, but have an inherently non-linear struc- 
ture that is apparently lost in the presence of  a  malignant  
tumor. 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3 | Evolution of the temperature WT coefficient pdfs across c1 = 1.23, and (C,Ct ) the healthy right breast of volunteer 14: c1 = 1.17. The 
time-scales. Pdfs of WT coefficients W and rescaled WT coefficients different curves correspond to seven different scales from a = 0.43 s to 
(W/(a/a0 )c1 ) of cumulative temperature of (A,At ) the cancerous right breast 2.30 s, larger scales are in darker shades; a0 = 0.43 s. The pdfs were 
of patient 20: c1  = 0.81, (B,Bt ) the opposite left breast of patient 20: averaged over a 8 × 8 pixel2 square. 
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4.3. MULTIFRACTAL-BASED SEGMENTATION OF BREAST 
THERMOGRAMS INTO PHYSIOLOGICALLY ALTERED (RISKY) AND 
NORMAL REGIONS 

When extending our wavelet-based multifractal analysis of cumu- 
lative temperature time-series to the entire set of 8 × 8 pixels2- 
squares that cover the right breast with malignant tumor of 
patient 20 (Figures 4A,D), her opposite left breast (Figures 4B,E) 
and the healthy right breast of volunteer 14 (Figures 4C,F),    
we confirmed, except in a  minority  of  squares,  the  exis-  
tence  of  scaling.  In  the  cancerous  breast,  a  large  proportion 
of squares (49.7%) display monofractal temperature fluctua- 
tions with small intermittency coefficient values (c2 < 0.03 in 
Figure 4D), whereas only few of those squares are found in the 
opposite breast (7.7% in Figure 4E) and in the volunteer 14 
healthy breast (11% in Figure 4F). Both these healthy breasts 
have a large majority of squares where multifractal scaling is 
observed (c2 ) 0.03), namely 89.4% for the former (Figure 4B) 
and 65% for the latter (Figure 4C). Note that 43.1% of the 
squares in the cancerous breast also display multifractal temper- 
ature fluctuations as observed for healthy breasts (Figure 4A). 
These squares indeed cover regions of the breast that are    far 
from the tumor area (left upper quadrant) mostly covered by 
monofractal squares. These results are indeed quite represen- 
tative of the outcome of the statistical analysis of our entire   
data set. 

4.4. COMPARATIVE STATISTICAL ANALYSIS OF SKIN TEMPERATURE 
DYNAMICS IN WOMEN BREASTS WITH AND WITHOUT 
MALIGNANT  TUMOR 

The results of our comparative wavelet-based multifractal analysis 
of (cumulative) temperature fluctuations over the 33 cancerous 
breasts, the 32 opposite breasts (no right breast for patient 6)  
and the 28 volunteer healthy breasts are reported in Figure 5 and 
Table 2. In Figure 5A, the corresponding histograms of c1 val- 
ues extend over a rather wide range 0.6 ;S c1 ;S 1.8 but turn out 
to be quite similar with mean values c̄ 1 = 1.066 ± 0.002 (can- 
cer), 1.104 ± 0.002 (opposite) and 1.103 ± 0.002 (healthy). This 
is reminiscent to the similar histograms that were also   obtained 
for the power-spectrum exponent β (Supplementary Figure 3). 
In contrast, the intermittency parameter c2 has a definite dis- 
criminatory power. The histogram for cancerous breasts     (c̄ 2  = 
0.045 ± 0.001) is definitely shifted toward smaller values rela- 
tive to the ones for opposite (c̄ 2 = 0.056 ± 0.001) and healthy breasts 
(c̄ 2  = 0.058 ± 0.001) (Figure 5B). The small-value  left- 
side  of  the  c2   histogram  is  much  more  populated  in cancer- 
ous than in healthy breasts, confirming that cancerous breasts  
are enriched in squares where temperature fluctuations display 
significantly reduced multifractal properties. This justifies that 
we considered c2 = 0.03 as the threshold below (resp. above) 
which a square was qualified as monofractal (resp. multifractal) 
(Figure 4). Note that for each breast, a small percentage (;S20%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4 | Breast-wide multifractal analysis of skin temperature c2  ?: 0.03, and white: no scaling (see text). (A,D) Cancerous right breast of 
temporal fluctuations. As estimated from the τ (q) spectra computed with patient 20: the tumor is located in the upper outer quadrant (Table 1); (B,E) 

the WTMM method (Figure 1E), 8 × 8 pixel2 squares covering the entire healthy left breast of patient 20; (C,F) healthy right breast of volunteer 14. 
breast are colored coded (A–C) and represented as a dot in the (c1 , c2 ) plane The blue diamond shapes in (A–C) are skin surface markers used as 
(D–F). The colors have the following meaning: red: c2  < 0.03, blue: references for motion correction. 
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of (white) squares were removed from our analysis because of 
lack of scaling (Figure 5C, Table 2 and Supplementary Table 1). 
Importantly, the percentage of monofractal (red) squares cover- 
ing cancerous breasts (26.8 ± 3.5%) is about twice larger than the 
ones covering opposite (13.1 ± 2.3%) and healthy (11.3 ± 2.2%) 
breasts. This excess is compensated by a smaller percentage of 
multifractal (blue) squares in cancerous breasts (56.9 ± 4.4%) 
than in opposite (68.5 ± 3.8%) and healthy (69.4 ± 4.3%) breasts 
(Figure 5C). 

A common way to suspect cancer by IR thermography is to 
look for some dissymmetry between the two breasts of a patient 
(Etehadtavakol and Ng, 2013). When comparing the percent- 
ages of monofractal squares on both the cancer and opposite 
breasts of the 33 patients (except patient 6), we found that 25 
(/32) have more monofractal squares on the cancerous breast 
(Table 2). Indeed, we found 18 (/33) malignant breasts that have 
a percentage of monofractal squares greater than the mean value 
26.8 ± 3.5 (Figure 5D). Among the other 15 cancerous breasts, 

 
7 have a smaller percentage of monofractal squares but well 
localized on the tumor region (Figure 4A and Supplementary 
Figure 6). The remaining 8 cancerous breasts  correspond  to 
false negatives for which not only the percentage of monofrac- 
tal squares is small but their location is far from the tumor region 
(Supplementary Figure 7). Among these false negatives, 4 corre- 
spond to rather deep tumors in fatty breasts which can explain 
that they do not manifest in a qualitative change in temperature 
dynamics at the skin surface in patients 12 (size 1.8 cm, depth  
12 cm) (Supplementary Figure 8), 16 (3.4 cm, 7 cm), 18 (3.49 cm, 
6 cm) and 28 (3.49 cm, 8 cm). When investigating the 32 opposite 
breasts, 5 of them have a large percentage of monofractal squares 
(Figure 5D, Table 2 and Supplementary Figure 9). These impor- 
tant percentages similar to those obtained in malignant breasts are 
probable indication of some physiological changes in the oppo- 
site breast that may announce the possible extension of cancer  
to the second breast. As a control, we reproduced this compar- 
ative analysis on the two breasts of the 14 healthy volunteers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5 | Differential multifractal signature of temperature temporal opposite breast of each patient; the symbols have the following meaning: (•) 
fluctuations on breasts with and without tumor. Comparative analysis of 17 patients with a percentage of monofractal squares on the cancerous 
both breasts of 33 patients with breast cancer and 14 healthy volunteers. (A) breast larger than the mean value 26.8%, namely patients 2, 4, 7,  8, 9, 10, 11, 
Normalized histograms of c1  values obtained in the breasts with a malignant 13, 17, 19, 20, 22, 25, 26, 29, 30, and 32 (patient 6 is not taken into account 
tumor (red: N = 4032 8 × 8 pixel2 squares), the opposite breasts (black: because of mastectomy of right breast); (∗) 7 patients with the percentage of 
N = 3606) and the healthy breasts (green: N = 3185). (B) Normalized monofractal squares on the cancerous breast smaller than 26.8% but well 
histograms of c2  values. (C) Percentage of “monofractal” (red: c2   < 0.03), localized on the tumor region, namely patients 3 (16.3%), 14 (18.9%), 21 
“multifractal” (blue: c2  ?: 0.03) and “no scaling” (black) 8 × 8  pixel2  squares (14.0%), 23 (4.6%), 24 (4.9%), 31 (6.8%), and 33 (17.0%); (◦) 8 false 
in cancerous, opposite and healthy breasts. (D) Percentage of “monofractal” negatives, namely patients 1 (2.4%), 5 (0.8%), 12 (4.9%), 15 (1.3%), 16 
8 × 8 pixel2 squares in the cancerous breast vs. the percentage in the (0.0%), 18 (7.7%), 27 (4.3%), and 28 (6.6%) (see Table 2). 
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Table 2 | Results of our WTMM multifractal analysis of the skin (cumulative) temperature temporal fluctuations of the two breasts of our 33 

patients with breast cancer. 

Cancerous breast Opposite breast 
  

Nmono Nmulti Nnoscaling Total Nmono Nmulti Nnoscaling Total 
 

1 2 (2.4%) 20 (24.4%) 60 (73.2%) 82 (100%) 3 (4.7%) 46 (71.9%) 15 (23.4%) 64 (100%) 
2 39 (42.9%) 23 (25.3%) 29 (31.9%) 91 (100%) 5 (4.1%) 61 (50.0%) 56 (45.9%) 122 (100%) 
3 16 (16.3%) 60 (61.2%) 22 (22.4%) 98 (100%) 31 (25.8%) 77 (64.2%) 12 (10.0%) 120 (100%) 
4 56 (33.1%) 90 (53.3%) 23 (13.6%) 169 (100%) 7 (8.3%) 62 (73.8%) 15 (17.9%) 84 (100%) 
5 1 (0.8%) 108 (82.4%) 22 (16.8%) 131 (100%) 0 (0.0%) 122 (91.7%) 11 (8.3%) 133 (100%) 
6 54 (30.5%) 101 (57.1%) 22 (12.4%) 177 (100%)     
7 44 (32.4%) 59 (43.4%) 33 (24.3%) 136 (100%) 26 (23.0%) 75 (66.4%) 12 (10.6%) 113 (100%) 
8 20 (27.0%) 46 (62.2%) 8 (10.8%) 74 (100%) 1 (1.4%) 29 (39.2%) 44 (59.5%) 74 (100%) 
9 65 (40.1%) 85 (52.5%) 12 (7.4%) 162 (100%) 39 (25.7%) 37 (24.3%) 76 (50.0%) 152 (100%) 
10 77 (51.3%) 42 (28.0%) 31 (20.7%) 150 (100%) 40 (24.2%) 96 (58.2%) 29 (17.6%) 165 (100%) 
11 62 (46.3%) 54 (40.3%) 18 (13.4%) 134 (100%) 23 (17.6%) 87 (66.4%) 21 (16.0%) 131 (100%) 
12 5 (4.9%) 97 (94.2%) 1 (1.0%) 103 (100%) 1 (0.9%) 114 (99.1%) 0 (0.0%) 115 (100%) 
13 48 (37.8%) 18 (14.2%) 61 (48.0%) 127 (100%) 50 (40.0%) 18 (14.4%) 57 (45.6%) 125 (100%) 
14 17 (18.9%) 65 (72.2%) 8 (8.9%) 90 (100%) 8 (8.9%) 72 (80.0%) 10 (11.1%) 90 (100%) 
15 1 (1.3%) 70 (90.9%) 6 (7.8%) 77 (100%) 0 (0.0%) 26 (89.7%) 3 (10.3%) 29 (100%) 
16 0 (0.0%) 79 (54.1%) 67 (45.9%) 146 (100%) 52 (29.4%) 111 (62.7%) 14 (7.9%) 177 (100%) 
17 106 (57.6%) 64 (34.8%) 14 (7.6%) 184 (100%) 3 (2.1%) 104 (73.8%) 34 (24.1%) 141 (100%) 
18 11 (7.7%) 111 (77.6%) 21 (14.7%) 143 (100%) 0 (0.0%) 111 (93.3%) 8 (6.7%) 119 (100%) 
19 60 (34.1%) 106 (60.2%) 10 (5.7%) 176 (100%) 29 (19.1%) 113 (74.3%) 10 (6.6%) 152 (100%) 
20 76 (49.7%) 66 (43.1%) 11 (7.2%) 153 (100%) 11 (7.7%) 127 (89.4%) 4 (2.8%) 142 (100%) 
21 25 (14.0%) 148 (82.7%) 6 (3.4%) 179 (100%) 17 (9.3%) 156 (85.7%) 9 (4.9%) 182 (100%) 
22 50 (29.8%) 41 (24.4%) 77 (45.8%) 168 (100%) 86 (44.1%) 82 (42.1%) 27 (13.8%) 195 (100%) 
23 7 (4.6%) 143 (93.5%) 3 (2.0%) 153 (100%) 27 (16.2%) 111 (66.5%) 29 (17.4%) 167 (100%) 
24 8 (4.9%) 144 (88.3%) 11 (6.7%) 163 (100%) 0 (0.0%) 163 (94.2%) 10 (5.8%) 173 (100%) 
25 77 (57.0%) 55 (40.7%) 3 (2.2%) 135 (100%) 24 (18.0%) 101 (75.9%) 8 (6.0%) 133 (100%) 
26 87 (47.3%) 31 (16.8%) 66 (35.9%) 184 (100%) 18 (14.4%) 37 (29.6%) 70 (56.0%) 125 (100%) 
27 7 (4.3%) 148 (91.4%) 7 (4.3%) 162 (100%) 0 (0.0%) 139 (91.4%) 13 (8.6%) 152 (100%) 
28 11 (6.6%) 140 (84.3%) 15 (9.0%) 166 (100%) 27 (16.5%) 84 (51.2%) 53 (32.3%) 164 (100%) 
29 65 (38.9%) 67 (40.1%) 35 (21.0%) 167 (100%) 7 (4.0%) 144 (82.8%) 23 (13.2%) 174 (100%) 
30 116 (70.3%) 40 (24.2%) 9 (5.5%) 165 (100%) 65 (42.8%) 72 (47.4%) 15 (9.9%) 152 (100%) 
31 13 (6.8%) 175 (91.1%) 4 (2.1%) 192 (100%) 1 (0.6%) 140 (82.8%) 28 (16.6%) 169 (100%) 
32 88 (48.1%) 90 (49.2%) 5 (2.7%) 183 (100%) 11 (5.5%) 160 (80.0%) 29 (14.5%) 200 (100%) 
33 23 (17.0%) 109 (80.7%) 3 (2.2%) 135 (100%) 5 (3.6%) 112 (80.0%) 23 (16.4%) 140 (100%) 

Number and percentage of monofractal (c2 < 0.03), multifractal (c2 ?: 0.03), no-scaling (and total) 8 × 8 pixel2 squares in the cancerous breast and in the opposite 
breast (see Figure 4 and Supplementary Figures 4–7). 

 
(Supplementary Figure 10 and Table 1). Among the 28 breasts 
analyzed, only 4 have a large ()26.8%) percentage of monofrac- 
tal squares, whereas most of them have a percentage ;S10% 
(Supplementary Figures 11, 12). Overall, we thus obtained 25 
(/33) true positives and 4 (/28) false positives, i.e., a sensitivity  
of 76% and a specificity of 86%, respectively. 

 
5. CONCLUSIONS 
Over the course of a lifetime, 1 in 8 women will be diagnosed 
with breast cancer. There are no well-established ways to avoid 
breast cancer (as opposed to lung cancer for example) and in   
the context of breast cancer screening, abnormalities should be 
detected at an early stage to improve  prognosis.  Criticism of  
the use of screening mammography due to over-diagnosis led 

some researchers to show that one in three breast cancers iden- 
tified by mammography would not cause symptoms in a patient’s 
lifetime (Jorgensen and Gotzsche, 2009). Therefore, alternative 
and accurate screening technologies must be developed. The 
functional and technical background of  dynamic  IR  imaging 
has the potential for early detection of breast cancer and treat- 
ment response evaluation if optimal diagnostic algorithms are 
developed. We have shown  that  the  wavelet-based  multifrac- 
tal analysis of dynamic IR thermograms is able to discriminate 
between cancerous breasts with monofractal (cumulative) tem- 
perature temporal fluctuations characterized by a unique   singu- 
larity exponent (h = c1), and healthy breasts with multifractal 
temperature fluctuations requiring a wide range of singularity 
exponents as quantified by the intermittency coefficient c2 » 0. 

http://www.frontiersin.org/
http://www.frontiersin.org/Fractal_Physiology/archive


Frontiers in Physiology | Fractal Physiology May 2014 | Volume 5 | Article 176 | 10 

Gerasimova et al. Breast cancer thermogram multifractal analysis 
 

 

 
 

This is strikingly analogous to the results of a similar wavelet- 
based analysis of human heart beat dynamics (Ivanov et al., 1999, 
2001; Goldberger et al., 2002), where the multifractal character 
and non-linear properties of the healthy heart rate were shown   
to be lost in pathological condition, congestive heart failure. 
Indeed, this distinction was intrinsically beyond the capability of 
spectral (Fourier) analysis which only gives access to the power- 
spectrum exponent β = τ (q = 2) = −c0 + 2c1 − 2c2, and not to 
the full τ (q) spectrum required for multifractal diagnosis (Muzy 
et al., 1991, 1994; Arneodo et al., 1995, 2008). Furthermore 
the fact that c1 (∼ 1) is about one order of magnitude larger 
than the intermittency coefficient c2 (;S 0.1), explains why very 
much like c1 (Figure 5A), the spectral exponent β ∼ −c0 + 
2c1 ∼ 1 » c2 (Supplementary Figure 3) has no discriminatory 
power. 

Interdisciplinary effort revealing specific fractal characteris- 
tics for healthy and cancerous breast tissues definitely challenges 
current knowledge in physical, physiological and clinical fun- 
damentals of oncogenesis. Fundamentally, our results indicate 
that skin temperature fluctuations of healthy breasts are more 
complex (multifractal) than previously suspected. They definitely 
raise new challenging questions to ongoing efforts to develop 
physiological 3D breast models that account for the skin sur- 
face temperature distribution in the presence (or absence) of     
an internal tumor (Ng and Sudharsan, 2004; Xu  et al., 2008;  
Lin et al., 2009). The observed drastic simplification from mul- 
tifractal to monofractal skin temperature dynamics may result 
from some increase in blood flow and cellular activity associated 
with the presence of a tumor (Thomsen and Miles, 1998; Anbar 
et al., 2001; Button et al., 2004; Joro et al., 2008b). More likely  
it can be the signature of some architectural change in the cel- 
lular microenvironment of the breast tumor (Bissell and Hines, 
2011) that may deeply affect heat transfer and related thermome- 
chanics in breast tissue (Xu et al., 2008; Quail and Joyce, 2013). 
Identifying the regulation mechanisms that originate in a loss    
of multifractal temperature dynamics will be an important step 
toward understanding breast cancer development, tumor growth 
and progression. Dynamic IR thermography is a non-invasive 
and objective screening method that is inexpensive, quick and 
painless for the patient. Future use of wavelet-based multifractal 
processing of dynamic IR thermography, could help identifying 
women with high risk of breast cancer, prior to more traumatic 
and painful examination such as mammography and biopsy. It 
can also prove to be a valuable and reliable adjunct tool for 
early detection of tumors in other locations than in mammary  
glands. 
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